Image Processing Fundamentals

Terry S. Yoo

the National Library of Medicine, NIH

Do What? How?

- Find the surface normal to the embedded surface?
- Locate an object within the volume?
- Take the derivative of a kidney?
- How do I evaluate the error introduced by sampling?
- What is aliasing, really?
- How does this all work together in volume graphics?

Image Basics

- Given a discrete volume dataset, vol[x][y][z]
- Imagine a volume generating function, f, such that for any particular point p_i = $(x_i,y_i,z_i)\!:$

$$f(x_i,y_i,z_i) = \textit{vol}[x_i][y_i][z_i]$$

- Must reconstruct f(x,y,z) from vol[x][y][z].
- \bullet Can make measurements of $\ f(x,y,z),\ (e.g.,derivatives)$
- HOW?

Convolution

- Sampling.
- Interpolation.
- Reconstruction.
- Low pass filtering.
- Noise suppression.
- Edge enhancement. Derivative measurement.
- Linear scale space analysis.

Convolution

Convolution integral

$$h(x) \otimes I(x) = \int_{-\infty}^{\infty} h(\tau)I(x - \tau) d\tau$$

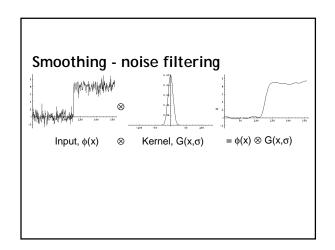
Convolution & the Gaussian

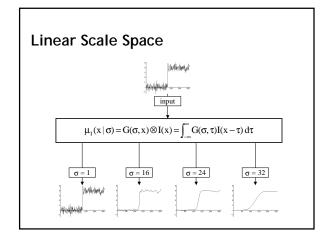
Convolution integral

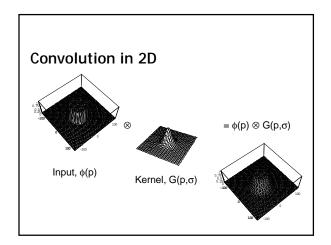
$$h(x) \otimes I(x) = \int_{-\infty}^{\infty} h(\tau)I(x - \tau) d\tau$$

Gaussian as a convolution kernel (with spatial scale parameter, σ)

$$h(x) = G(\sigma, x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}$$





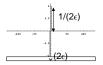


Properties of the Convolution Operator Property: • Commutative. • Associative • Distributive over addition. Mathematically: • $f \otimes h = h \otimes f$ • $(f \otimes h) \otimes g = f \otimes (h \otimes g)$ • $f \otimes (h + g) = (f \otimes h) + (f \otimes g)$

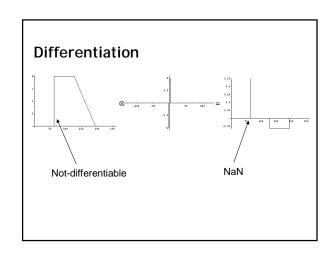
Convolution & differentiation

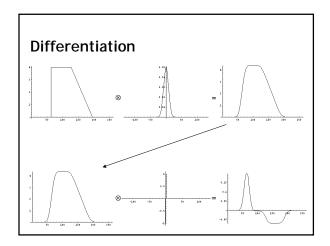
- Problem: Real-world data are seldom accompanied with continuous functions, suitable for differentiation.
- Observation: Differentiation is just a convolution!

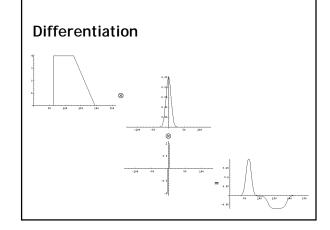
 $\frac{\partial}{\partial x}\phi = \frac{\partial}{\partial x}\otimes \phi$

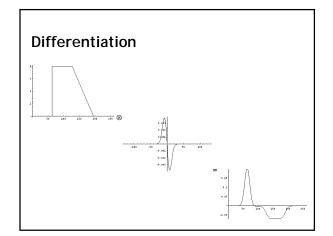


- Problem: Derivatives of real-world data are not always defined.
- Observation: Differentiation is associative and commutative. $h(x)\otimes \partial/\partial x\otimes f(x)=\partial/\partial x\otimes h(x)\otimes f(x)$
- Solution: Combine differentiation with a regularizing kernel.









Now for something different...

But not completely different...

$$e^{i\pi} = -1$$

$$e^{\alpha + i\beta} = \cos \alpha + i \sin \beta$$

The Fourier Transform

- A different mirror with which to view images.
- The Fourier transform

$$\mathcal{F}(\phi(x)) = \int_{-\infty}^{\infty} \phi(x)e^{-i2\pi x\nu}dx = \Phi(\nu)$$

- The result transforms a function of x in image space to a function of v in frequency space.
- There is an Inverse Fourier transform for undoing this process.

$$\mathcal{F}^{-1}(\Phi(\nu)) = \int_{-\infty}^{\infty} \Phi(\nu) e^{i2\pi x \nu} d\nu = \phi(x)$$

Fourier Transforms of common functions Image Space: Frequency Space: F(Box) (nearest neighbor) F(Pyramid) Pyramid (linear interpolant) (linear interpolant) Gaussian Gaussian (std. distribution) (non-normalized) Comb / Shah Comb

Properties of the Fourier **Transform**

Property:

Property:

Frequency Scaling ⇒

 Spatial Scaling ⇒ Inverse Spatial Scale Change Inverse Frequency Scale Change

$$\mathcal{F}\frac{1}{|a|}\phi\left(\frac{\nu}{a}\right)\left(\phi(ax)\right)=\Phi(a\nu) \qquad \qquad \mathcal{F}(\phi(ax))=\frac{1}{|a|}\Phi\left(\frac{\nu}{a}\right)$$

$$\mathcal{F}(\phi(ax)) = \frac{1}{|a|} \Phi\left(\frac{\nu}{a}\right)$$

$$\mathcal{F}^{-1}\frac{1}{|a|}\Phi\left(\frac{\nu}{a}\right)=\phi(ax) \qquad \qquad \mathcal{F}^{-1}(\Phi(a\nu))=\frac{1}{|a|}\phi\left(\frac{\nu}{a}\right)$$

The Convolution Theorem

(sampling function)

• Convolution in space = multiplication in frequency

$$\mathcal{F}(\phi(x)\otimes h(x)) = \Phi(\nu)H(\nu)$$

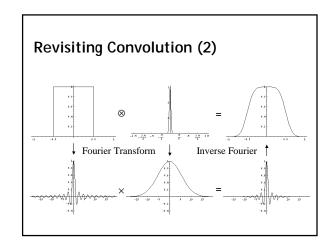
• Convolution in frequency = multiplication in space

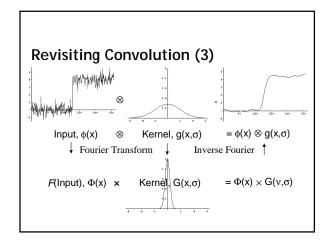
$$\mathcal{F}^{-1}(\Phi(\nu)\otimes H(\nu)) = \phi(x)h(x)$$

Revisiting Convolution

now see convolution as a transform, a multiplication, and an inverse transform.

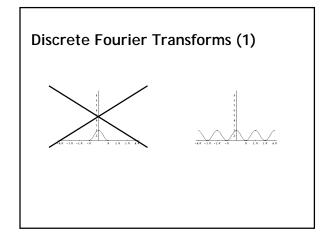
$$\phi(x) {\color{red} \boxtimes} \, h(x) = \mathcal{F}^{-1}(\mathcal{F}(\phi(x))\mathcal{F}(h(x)))$$

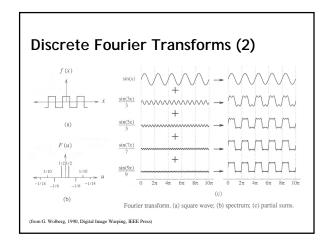


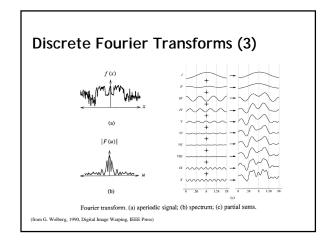


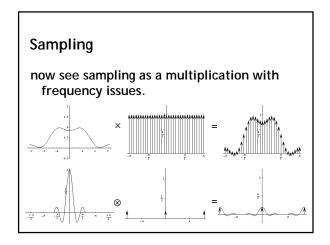
Discrete Fourier Transforms

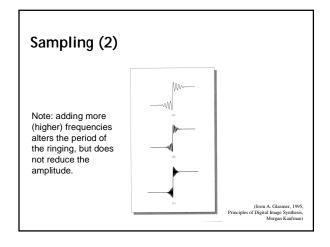
- Periodic.
 - Assume that the function is a single period of a infinitely repeating function.
 - Or: Think of it as an image that wraps onto itself like a doughnut (torus).
- Discrete.
 - If there are n samples in the spatial domain, there will be n samples in frequency domain, too.





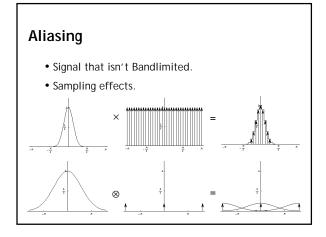


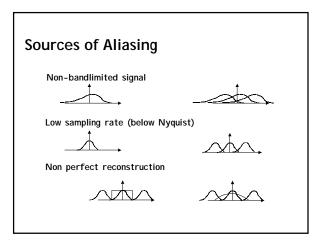




Sampling (3)

- Bandlimited.
 - A signal ϕ is considered bandlimited if its Fourier transform, $F(\phi(x)) = \Phi(\omega)$ satisfies the following condition
 - $\Phi(\omega) = 0$ and $\Phi(-\omega) = 0$ for all $\omega > \omega_{limit}$
- Satisfies the Nyquist criterion.
 - The discrete signal does not contain frequencies higher than 1/2 the sampling frequency



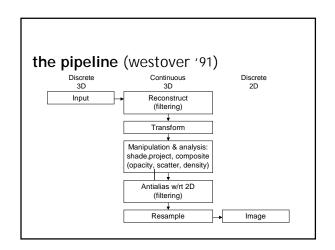


Possible Errors

- Post-aliasing
 - Reconstruction filter passes frequencies beyond the Nyquist frequency (of duplicated frequency spectrum) => frequency components of the original signal appear in the reconstructed signal at different frequencies.
- Smoothing
 - Frequencies below the Nyquist frequency are attenuated.

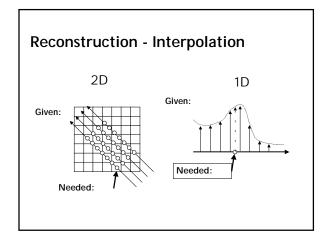
Possible Errors(2)

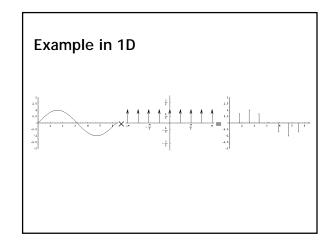
- Ringing (overshoot)
 - Occurs when trying to sample/reconstruct discontinuity.
- Anisotropy
 - Caused by non-spherically symmetric filters.
 - Requires filters that are invariant with respect to rotation.

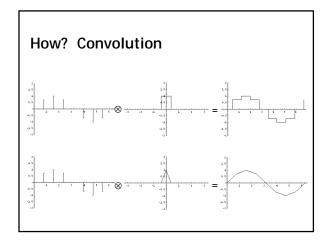


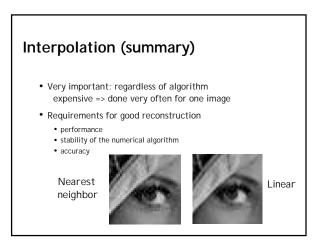
input

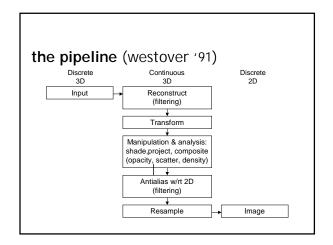
- Bandlimited.
- Appropriately sampled: above the Nyquist frequency.











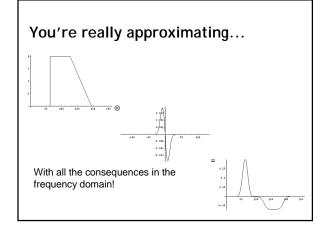
Transformation magnify / minify

- Remember, spatial scaling = inverse frequency scale.
- Magnification / scaling of the reconstructed input ⇒ transformation / minimization of the sampling function.
- Minification / scaling of the reconstructed input ⇒ transformation / magnification of the sampling function

Resample

- with antialiasing
- without antialiasing

Summary



Summary

- Convolution is a basic operation, used in:
 - interpolation, reconstruction.
 - Noise filtering.
 - Differentiation, measurement.
 - Statistics.
- The frequency domain.
 - It exists.
 - Operations in discrete images have frequency based consequences.
 - It's happening whether you're watching for it or not.